A novel pharmacological action of ET-1 to prevent the cytotoxicity of doxorubicin in cardiomyocytes.
نویسندگان
چکیده
We previously reported that cardiomyocytes produce endothelin (ET)-1 and that the tissue level of ET-1 markedly increased in failing hearts in rats with chronic heart failure. Because the level of plasma ET-1 also increased progressively in patients with breast cancer who received doxorubicin (Dox; Adriamycin), which possesses cardiotoxicity, we hypothesized that ET-1 plays a role in the pathophysiology of cardiomyocytes injured by Dox. In this study, we investigated the effect of ET-1 on the cytotoxicity of Dox in primary cultured neonatal rat cardiomyocytes. The results showed that ET-1 effectively attenuated Dox-induced acute cardiomyocyte cytotoxicity (24-h incubation with Dox) evaluated by in vitro cell toxicity assay [3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and lactate dehydrogenase release]. The cytoprotective effect of ET-1 was mediated via ET(A) receptors, because pretreatment with the ET(A)-receptor antagonist BQ123 completely suppressed the cytoprotective effect of ET-1, whereas the ET(B)-receptor antagonist BQ788 did not. The cytoprotective effect of ET-1 was abolished by pretreatment with cycloheximide or staurosporine. These results suggest that a protein molecule(s), which is synthesized de novo by the stimulation of protein kinase pathway, is involved in the cytoprotective effect of ET-1. ET-1 increased the expression of an endogenous antioxidant, manganese superoxide dismutase (Mn-SOD), in the cardiomyocytes, as demonstrated by a Western blotting analysis. Pretreatment with an antisense oligodeoxyribonucleotide of Mn-SOD markedly attenuated the cytoprotective effect of ET-1 on the Dox-induced cytotoxicity. However, under conditions of prolonged incubation with Dox (48 h), ET-1 did not affect Dox-induced cardiomyocyte cytotoxicity in culture. These results suggest that ET-1 prevents the early phase of Dox-induced cytotoxicity via the upregulation of the antioxidant Mn-SOD through ET(A) receptors in cultured cardiomyocytes.
منابع مشابه
Embryonic stem cells derived cardiomyocytes are a suitable model for assessment of cardiotoxic effects of doxorubicin and other drugs
Introduction: Doxorubicin is frequently used for treatment of several types of cancer. Doxorubicin cardiac toxicity has limited the use of this drug. Corticosteroids may prevent doxorubicin induced cardiotoxicity. Therefore the aim of this study was to evaluate mouse embryonic stem cells derived cardiomyocytes as a model to evaluate the effect of Doxorubicin and dexamethasone. Methods: Mouse ...
متن کاملGenetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro
Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...
متن کاملA journey in doxorubicin-induced cardiotoxicity with emphasizing on the role of Connexin 43 and Sirtuin-3
Cancer has become a major health problem worldwide. The reported incidence of new cancer cases is estimated at 19.3 million, with a mortality rate of 10 million in the world in 2020. There are some approaches for cancer treatment such as chemotherapy, neoadjuant surgery, hormone therapy, and radiotherapy. Chemotherapy is an aggressive form of chemical drug therapy meant to destroy rapidly growi...
متن کاملCapparis spinosa reduces Doxorubicin-induced cardio-toxicity in cardiomyoblast cells
Objective: Doxorubicin (DOX) is an effective anticancer drug but its clinical application is limited because it induces apoptosis in cardiomyocytes and leads to permanent degenerative cardiomyopathy and heart failure possibly due to oxidative stress. Recent studies showed that Capparis spinosa (C. spinose)exhibits potent antioxidant activity. So, in this study, we explored the protective effect...
متن کاملPortulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis
Abstract Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 280 5 شماره
صفحات -
تاریخ انتشار 2001